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Genome-wide Association Study Identifies
Genes for Biomarkers of Cardiovascular Disease:
Serum Urate and Dyslipidemia

Chris Wallace,1 Stephen J. Newhouse,1 Peter Braund,2 Feng Zhang,3 Martin Tobin,4 Mario Falchi,3

Kourosh Ahmadi,3 Richard J. Dobson,1 Ana Carolina B. Marçano,1 Cother Hajat,2 Paul Burton,4

Panagiotis Deloukas,5 Morris Brown,6 John M. Connell,7 Anna Dominiczak,7 G. Mark Lathrop,8

John Webster,9 The Wellcome Trust Case Control Consortium, Martin Farrall,10 Tim Spector,3

Nilesh J. Samani,2 Mark J. Caulfield,1 and Patricia B. Munroe1,*

Many common diseases are accompanied by disturbances in biochemical traits. Identifying the genetic determinants could provide

novel insights into disease mechanisms and reveal avenues for developing new therapies. Here, we report a genome-wide association

analysis for commonly measured serum and urine biochemical traits. As part of the WTCCC, 500,000 SNPs genome wide were geno-

typed in 1955 hypertensive individuals characterized for 25 serum and urine biochemical traits. For each trait, we assessed association

with individual SNPs, adjusting for age, sex, and BMI. Lipid measurements were further examined in a meta-analysis of genome-wide

data from a type 2 diabetes scan. The most promising associations were examined in two epidemiological cohorts. We discovered asso-

ciation between serum urate and SLC2A9, a glucose transporter (p ¼ 2 3 10�15) and confirmed this in two independent cohorts,

GRAPHIC study (p ¼ 9 3 10�15) and TwinsUK (p ¼ 8 3 10�19). The odds ratio for hyperuricaemia (defined as urate >0.4 mMol/l) is

1.89 (95% CI¼ 1.36–2.61) per copy of common allele. We also replicated many genes previously associated with serum lipids and found

previously recognized association between LDL levels and SNPs close to genes encoding PSRC1 and CELSR2 (p¼ 1 3 10�7). The common

allele was associated with a 6% increase in nonfasting serum LDL. This region showed increased association in the meta-analysis (p¼ 4 3

10�14). This finding provides a potential biological mechanism for the recent association of this same allele of the same SNP with

increased risk of coronary disease.
Introduction

Serum and urine biochemistry measurements are used rou-

tinely in daily clinical practice to define comorbid traits

such as dyslipidaemia or as biomarkers of target organ dam-

age (e.g., urea, creatinine, and renal function). Many of

these traits have been shown to be under tighter genetic

control than their related diseases.1 By analyzing such her-

itable quantitative traits, genome-wide association scans

(GWASs) could enable us to discover unexpected genetic

factors or pathways for common quantitative traits and dis-

eases.2,3 This approach is very similar to early epidemiolog-

ical surveys that detected associations of common cardio-

vascular risk factors, e.g., cholesterol and coronary disease

(MIM 607339).4 Our hypothesis is that genetic variation

might influence the inheritance of commonly measured

biochemical traits, which might in some instances, serve

as risk factors for common diseases or associated complica-

tions.

In this study, we performed genome-wide quantitative

trait analyses of 25 commonly assessed biochemical vari-

ables from concomitant serum and urine samples from

hypertensive (essential hypertension [MIM 145500]) indi-
The Am
viduals from the MRC British Genetics of Hypertension

(BRIGHT) study.3 We also took the opportunity to combine

our lipid data with comparable data from a contemporary

diabetes GWAS5 by using meta-analysis. This approach of-

fers the chance to identify genetic determinants of bio-

chemical profiles that might extend across the population

and in turn could lead to disease-causing pathways and

therapeutic avenues.

Subjects and Methods

Study Subjects and Measurement of Covariates
Ascertainment of hypertensive individuals recruited for the

BRIGHT study and methods used for biochemical and urinary

analyses are described in detail elsewhere.6 In brief, white Euro-

pean patients were recruited if they had blood pressure readings

>145/95 (mean of three seated readings) or>150/100 (single read-

ing). Patients with diabetes (MIM 222100, MIM 125853), intrinsic

renal disease, secondary hypertension, extreme obesity (body

mass index, BMI >35 [MIM 601665]), or other coexisting illness

were excluded. A subset of 2000 unrelated hypertensives were cho-

sen for inclusion in the Wellcome Trust Case Control Consortium

(WTCCC) study;3 these were selected on the basis of current
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Table 1. Summary Statistics for All Biochemistry Variables Studied

Variable Unit n Normal Range Mean (SD) Median (IQR) Logged

Serum Biochemistry

GFR ml/min per 1.73 m sq 1780 >60 72.35 (13.46) -

Sodium mmol/l 1792 135.00–144.00 139.04 (3.18) -

Potassium mmol/l 1794 3.50–5.10 - 4.2 (3.8–4.5) *

Chloride mmol/l 1407 97.00–108.00 102.13 (3.15) -

Urea mmol/l 1804 2.50–7.50 - 5.7 (4.9–6.7) *

Creatinine umol/l 1806 60.00–110.00 - 88 (79–100) *

Calcium mmol/l 1803 2.20–2.65 2.4 (0.14) -

Corrected.calcium mmol/l 1807 2.16–2.53 2.34 (0.15) -

Albumin g/l 1803 36.00–50.00 44.4 (2.93) -

GGT U/l 1802 5.00–50.00 - 24 (17–36) *

Glucose mmol/l 1748 2.80–6.00 - 5.2 (4.7–5.8) *

Urate mmol/l 1766 0.10–0.42 0.32 (0.09) -

Cholesterol mmol/l 1635 3.10–6.50 5.6 (1.03) -

Triglyceride mmol/l 1635 <2.10 - 1.8 (1.3–2.6) *

HDL mmol/l 1636 0.90–1.93 - 1.3 (1.1–1.6) *

LDL mmol/l 1635 1.55–4.40 - 3.76 (3.2–4.4) *

Urine Biochemistry

Sodium mmol/l 1254 # - 77 (57–102) *

24 hr sodium mmol/24 hr 1249 40.00–222.00 140.93 (62.79) -

Potassium mmol/l 1254 # - 38 (30–50) *

24 hr potassium mmol/24 hr 1248 25.00–125.00 69.78 (25.98) -

Creatinine mmol/l 1248 # - 5.5 (4.3–7.8) *

24 hr creatinine mmol/24 hr 1248 9.00–18.00 - 9.63 (7.7–12.4) *

Albumin creatinine ratio mg/mmol 1144 <2.50 - 0.83 (0.48–1.53) *

Albumin mg/l 1144 <20 - 5 (3–8) *

Creatinine clearance ml/min 1186 80.00–140.00 80.63 (28.17) -

Variables that were log transformed are shown with a asterisk in the logged column. The number of observations (n) is shown together with the mean and

standard deviation for untransformed variables and median and interquartile range for log-transformed variables. Normal ranges were obtained from Clin-

ical Biochemistry Unit at the University of Glasgow; ‘‘#’’ indicates that no normal range available for this variable.
residence for maximization of geographical coverage across Great

Britain. Serum-biochemistry measures were done on nonfasting

samples, and only individuals with complete 24 hr urine collec-

tions were included; all measurements were performed by the

Clinical Biochemistry Unit at the University of Glasgow, and nor-

mal ranges are those given from this unit. Derived biochemistry

measures were calculated with standard formulae, including low-

density lipoprotein (LDL) cholesterol,7 glomerular filtration rate

(GFR),8 and corrected calcium, an estimate of ionized calcium.9

We used two independent resources for replication. The first was

composed of 2033 individuals (1028 men and 1005 women) from

519 families from the GRAPHIC study, a population based sample

broadly representative of the UK White European population; all

had serum-urate measurements available.10 The second was com-

posed of 1461 healthy female twin individuals of European de-

scent, ascertained from the TwinsUK registry (see Web Resources)

at St Thomas’ Hospital, London,11 and shown to be representative

of the UK population.12 TwinsUK subjects have been genotyped

on the Illumina 317k chip, and this enabled us to select proxy

single-nucleotide polymorphism (SNPs) in strong LD with our pri-

mary associated SNPs for replication. Both dizygotic twin (DZ)

individuals were included, and one individual, randomly selected

from the monozygotic twins (MZ), although the average of both

phenotypic traits was used in analysis. Both fasting serum-urate

and LDL levels were available from this cohort. Ethics committee

approval was previously obtained for all cohorts, and all partici-

pants gave informed written consent.
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Genotyping and Quality Control
The WTCCC genotyped SNPs on the Affymetrix 500K GeneChip

in 2000 BRIGHT subjects3. We followed WTCCC thresholds for

quality control; in brief, individuals were excluded if they had

>3% missing data or evidence of non-European ancestry under ei-

genstrat analysis. SNPs were excluded if they showed deviation

from Hardy Weinberg equilibrium (p < 5 3 10�7), high levels of

missing data (capture rate < 95%), or low minor allele frequency

(<1%). Cluster plots were manually examined for any SNP show-

ing p < 10�5 within BRIGHT subjects or the meta-analysis. Only

associations with SNPs that displayed clearly defined nonoverlap-

ping clusters are reported. Genotyping for the TwinsUK resource

was performed with the Illumina Human Hap 317 chip by the

Wellcome Trust Sanger Institute. Genotyping for the GRAPHIC

study was performed with the Taqman assay (Applied Biosystems)

and was followed by allelic discrimination with the ABI PRISM

7900HT Sequence Detection System and software (SDSv2.0,

Applied Biosystems).

Statistical Analysis
Each continuous trait was assessed for normality with quantile-

quantile plots and the Shapiro-Wilks test and then natural log

transformed if appropriate and regressed upon covariates: recruit-

ment center, age, age2, sex, and BMI. Extreme outliers (likely to re-

flect data errors) were identified by visual inspection of box plots

and removed. Trait-genotype association was modeled under an
2008



additive model for normally distributed variables and under a

multiplicative model for log-transformed variables. Individuals

who self-reported taking lipid-lowering drugs were excluded from

analyses of total cholesterol, high-density lipoprotein (HDL),

LDL, and triglycerides. The residuals from the regression analyses

were tested for association with each SNP with a score test for trend

(Hotelling’s t test), implemented in the snpMatrix library13 for the

statistical software R.14 We note that log transformations might not

be optimal for all traits. However, the Hotelling’s t test is an approx-

imation to a test based on the permutation distribution so that re-

sults do not depend on distributional assumptions.15 We estimated

overdispersion of the test statistics by using the genomic control

parameter l ¼ median c2/0.456.16 SNP-trait combinations that

showed p < 1 3 10�5 were reanalysed with linear regression,

thereby allowing us to estimate effect sizes and the proportion of

variance explained (R2). The Wald tests from a linear model can

be affected by nonnormality that can lead to incorrect estimates

of the variance-covariance matrix. To alleviate this, we use an

empirical estimate of the standard errors formed from 1000 boot-

strap samples to compute the Wald tests. We tested for evidence

for interaction between pairwise combinations of unlinked

SNPs by ANOVA comparison of models that allowed an interaction

effect to ones that did not. To investigate the potential location of

causative variants, we calculated the r2 measure of linkage disequi-

librium (LD) between Affymetrix and HapMap SNPs by using

snpMatrix.

Saxena et al. have recently published a GWAS of type 2 diabetes

(MIM 222100) in which they analyzed several serum-lipid pheno-

types in a combined group of 1464 cases and 1467 controls; results

are freely available on their website.5 To conduct meta analyses, we

reanalyzed LDL, HDL, and triglyceride variables according to the

same methods used by Saxena et al.—that is, we regressed natural

Table 2. Genomic Control Parameters, Lambda, Estimating
the Overdispersion of Chi Square Statistics for Each Trait
Studied

Trait Lambda

GFR 1.01

Sodium 1.00

Potassium 1.02

Chloride 1.02

Urea 1.00

Creatinine 1.02

Calcium 1.01

Corrected.calcium 1.03

Albumin 1.01

GGT 1.02

Glucose 1.01

Urate 1.01

Urine sodium 1.01

Urine sodium by volume 1.02

Urine potassium 1.01

Urine potassium by volume 1.00

Urine creatinine 0.99

Urine creatinine by volume 1.02

Urine albumin 1.01

Albumin creatinine ratio 1.02

Creatinine clearance 1.01

Cholesterol 1.00

Triglyceride 1.01

HDL 0.99

LDL 1.01
The Am
log transformed LDL, HDL, and triglyceride against recruitment

center, age, age2, and sex and then performed linear regression

of the standardized residuals against each SNP. We used the inverse

variance method to combine results with meta-analysis. Saxena

et al. used the same Affymetrix 500K GeneChip as the WTCCC.

For our analysis, we included SNPs that passed quality control

within the BRIGHT samples, as described above, and were called

in R95% of diabetic/control samples.

Association analysis was conducted in the TwinsUK samples

with linear regression with robust clustered-variance estimates

that allow for relatedness within twin pairs in STATA. Analysis in

the GRAPHIC study was undertaken by fitting generalized linear

mixed models (GLMMs) with Gibbs sampling in WinBUGS, and

such fitting adjusted for age and sex.17,18 These models include

random effects reflecting the variance attributable to additive

polygenic effects (s2
A), common family environment (s2

C), and

shared sibling environment (s2
Cs), as well as an error term (s2

E)

representing the variance attributable to the effect of unshared

nonfamilial factors. By modeling the covariance structure in this

manner, the GLMMs deal appropriately with the correlation

of traits, genotypes, and environmental determinants within

families and are robust to the effects of population substruc-

ture.17,19

The definition of a significant result in genome-wide scans is not

straightforward. We follow previous arguments3 and consider the

problem to be one of multiple hypotheses (many SNPs potentially

associated with each trait) rather than of multiple tests of a single

global null hypothesis. In this case, the threshold at which signif-

icance is declared depends on the (very small) a priori probability

that there is a true association at any given SNP and the power of

the study to detect it.20 Defining these priori probabilities is to

some degree guesswork, but we have made a pragmatic choice to

employ the threshold of p < 5 3 10�7 chosen in the WTCCC be-

cause many SNPs that displayed p < 5 3 10�7 have been readily

confirmed in follow-up replication studies.21,22 Power calculations

show we have 80% power at this threshold to detect variants re-

sponsible for 1.8% of the variance of any trait. We also report

SNPs of p < 1 3 10�5 because there are likely to be some genuine

associations within this set. The absolute test of association lies in

follow-up replication studies, and we have attempted to replicate

newly discovered associations in independent cohorts where

available or by meta analysis.

Results

Demographic Features of Cohorts

Subjects in the BRIGHT Study had a median age of 58 years

(interquartile range 49–65), and 60% were female. Summary

statistics for the biochemistry phenotypes are given in

Table 1. The values for phenotypes were generally within

normal ranges, apart from creatinine clearance that was

slightly reduced (mean 80 ml/min) and triglyceride levels

that were slightly elevated (median 1.8 mMol/l), compatible

with the hypertensive status of the subjects. The mean age

of the GRAPHIC cohort was 39 years (SD ¼ 14), and mean

urate levels were 0.27 mMol/l (SD ¼ 0.08 mMol/l). The

TwinsUK cohort mean age was 47 years (SD ¼ 12), and

mean urate levels were 0.26 mMol/l (SD ¼ 0.06 mMol/l).

The average fasting LDL level in TwinsUK was 3.47 mMol/l
erican Journal of Human Genetics 82, 139–149, January 2008 141



Table 3. Primary Associations in BRIGHT Subjects, p < 1 3 10�5

Trait Chr Position SNP Genes MAF A1 A2 Additive Effect 95% CI p R2

Serum Biochemistry

Albumin 3 125256768 rs9289231 KALRN 0.09 T G þ �0.77 �1.09, �0.45 2.91 3 10�6 1.20

Calcium 3 8114779 rs527498 - 0.36 G A þ �0.02 �0.03, �0.01 6.45 3 10�6 1.34

Chloride 5 52417975 rs12521915 ITGA2 0.37 C G þ 0.54 0.30, 0.78 8.09 3 10�6 1.41

Cholesterol 11 116175886 rs6589567 ApoA5 0.11 C A þ 0.28 0.17, 0.39 7.76 3 10�7 1.48

Cholesterol 1 109526922 rs4970834 CELSR2 0.20 C T þ �0.21 �0.30, �0.12 1.70 3 10�6 1.42

Cholesterol 16 81115185 rs10514542 - 0.28 G C þ 0.18 0.10, 0.25 6.98 3 10�6 1.23

Cholesterol 14 54967291 rs4470077 TBPL2 0.19 A G þ 0.20 0.11, 0.28 9.04 3 10�6 1.20

GGTa 9 114895784 rs17819305 TNC 0.09 C T 3 1.20 1.12, 1.29 1.74 3 10�7 1.50

GGT 2 44238574 rs2333825 - 0.43 G A 3 1.10 1.06, 1.15 2.68 3 10�6 1.21

GGT 22 16857154 rs10854521 - 0.24 G A 3 0.90 0.86, 0.94 7.44 3 10�6 1.11

Glucose 22 43065788 rs739161 - 0.30 T C 3 0.97 0.95, 0.98 3.75 3 10�6 1.68

HDL 10 132089471 rs11017236 - 0.16 T A 3 1.06 1.04, 1.09 5.67 3 10�7 1.51

HDL 11 102903507 rs11826048 - 0.09 C T 3 0.92 0.90, 0.95 9.70 3 10�7 1.45

HDL 3 15540326 rs905648 COLQ 0.34 C T 3 0.96 0.94, 0.98 4.58 3 10�6 1.28

LDLa 1 109534208 rs599839 PSRC1, CELSR2 0.24 A G 3 0.95 0.93, 0.97 1.05 3 10�7 1.71

LDL 2 51183769 rs11889082 - 0.08 A G 3 1.08 1.05, 1.12 1.22 3 10�6 1.44

LDL 8 129112227 rs6470600 NA 0.03 G A 3 0.89 0.85, 0.94 8.68 3 10�6 1.21

Triglyceridea 11 116157633 rs6589566 APOA5 0.06 A G 3 1.28 1.19, 1.37 2.89 3 10�11 2.65

Triglyceridea 8 19876926 rs17482753 LPL 0.11 G T 3 0.84 0.79, 0.89 1.17 3 10�9 2.22

Triglyceridea 2 27652888 rs780094 GCKR 0.39 C T 3 1.10 1.06, 1.14 4.99 3 10�7 1.54

Triglyceride 19 36032592 rs17545624 - 0.29 A G 3 1.10 1.06, 1.14 2.13 3 10�6 1.36

Uratea 4 9642649 rs7442295 SLC2A9 0.21 A G þ �0.02 �0.03, �0.02 1.85 3 10�15 3.48

Urate 8 42088927 rs7840827 - 0.20 G A þ 0.02 0.01, 0.02 1.84 3 10�6 1.28

Urea 12 38609908 rs11174338 SLC2A13 0.12 G T 3 1.06 1.03, 1.08 7.91 3 10�6 1.10

Urine Biochemistry

Albumina 12 102813190 rs11111839 XR_015316.1 0.06 C A 3 1.61 1.35, 1.93 2.51 3 10�7 2.31

Albumina 3 19758281 rs17006217 - 0.13 T C 3 0.72 0.64, 0.82 4.52 3 10�7 2.21

Creatinine 11 21910263 rs324175 - 0.09 C T 3 0.87 0.82, 0.92 6.03 3 10�7 1.97

Potassium 22 17950507 rs737857 - 0.10 A G 3 1.12 1.07, 1.18 2.19 3 10�6 1.76

Potassium by volume 23 122355911 rs4474149 - 0.38 G A þ �3.86 �5.54, �2.19 5.88 3 10�6 1.62

Potassium by volume 10 91689651 rs1419112 - 0.06 C T þ �9.34 �13.31, �5.38 4.02 3 10�6 1.69

Sodiuma 20 1936599 rs6035310 PDYN 0.18 A C 3 1.13 1.08, 1.18 2.32 3 10�7 2.10

Sodium 2 133366441 rs10496693 Q6ZVE2_HUMAN 0.25 G A 3 1.09 1.05, 1.14 3.24 3 10�6 1.71

Creatinine clearance 1 58615359 rs706430 - 0.42 G A þ �4.49 �6.45, �2.52 8.02 3 10�6 1.66

Only the SNP with the lowest p value for each region is shown. Genes listed are within 20 kb of the associated SNP or within the LD block estimated from

HapMap data. MAF stands for minor allele frequency; A1 stands for the major allele; and A2 stands for the minor allele; effects are additive (þ) or mul-

tiplicative (3) depending on whether the phenotype was log transformed. ‘‘R2’’ represents the percentage of phenotypic variance explained by the SNP. All

SNP positions are in relation to build 35 of the human genome.
a Associations with p < 5 3 10�7.
(SD ¼ 1.10 mMol/l). Demographics of the Saxena et al.

cohort have been published previously.5

Summary of Quality-Control Measures

Only limited overdispersion of test statistics was observed

in the BRIGHT cohort, with l ranging from 0.99–1.03

with a mean of 1.01 over all traits (Table 2). This implies

that our type I error rates will be broadly correct and that

the influence of unmeasured population substructure

and cryptic relatedness is minimal. Genotype data for

1955 individuals and 400,496 SNPs passed quality control.

Genetic Associations

Our analysis identified several previously unrecognized

associations and confirmed previously published associa-

tions (Table 3). The strongest association was between se-
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rum urate and SNPs in a 0.4 Mb region on chromosome

4p16–p15.3 (most associated SNP: rs7442295, p ¼ 2 3

10�15, Figure 1; more detailed information in Table 4). Urate

has several known potential confounders: serum creatinine,

alcohol consumption, blood pressure, sex, and administra-

tion of thiazide diruretics. We therefore reanalyzed the

association in a multivariate regression including all these

covariates; the evidence for association remained highly sig-

nificant (p¼ 1 3 10�13, effect¼�0.023 mMol/L per copy of

common allele, 95% CI ¼ �0.029, �0.016). Tables 5 and 6

show summary statistics on these covariates and the rela-

tionship between them. Estimated effect sizes are given in

Table 7. Among the BRIGHT subjects, 196 of 1765 with ur-

ate measurements were hyperuricaemic (defined as serum

urate >0.42 mMol/l). The effect of this SNP on serum urate

translated to an odds ratio of 1.89 (95% CI ¼ 1.36–2.61,
2008



p ¼ 5.6 3 10�5) per copy of the common allele. There was

no significant difference in effect by sex. We replicated

this finding in two independent cohorts: in the GRAPHIC

Table 4. Genotype Counts and Trait Distributions in BRIGHT
Subjects for Associations with Urate and LDL

SNP Trait

Number of

Individuals Genotypes Counts Trait Summary

rs7442295 Urate 1754 AA 1083 0.33 (0.09)

AG 600 0.31 (0.08)

GG 71 0.25 (0.08)

rs10489588 LDL 1628 AA 926 1.34 (1.18–1.50)

AG 621 1.29 (1.13–1.46)

GG 81 1.27 (1.10–1.40)

Traits are summarized within genotype by mean (standard deviation) for

urate and by median (interquartile range) for LDL because the latter is

nonnormally distributed.

Table 5. Summary Statistics about Confounding
Variables

Variable

Summary (median,

IQR unless otherwise shown)

Sex (female/male) 977/593

Thiazides (yes/no) 558/1012

rs7442295 (AA/AG/GG) 982/525/63

Alcohol (units/weeks) 3 (0–10)

Creatinine (mmol/l) 87 (79–99)

A total of 1570 individuals had information on all variables.

Figure 1. Genome-Wide Association
with Serum Urate
The dotted line represents the threshold
for genome-wide significance.

study by genotyping the same SNP

(p ¼ 9 3 10�15) and in TwinsUK by us-

ing the best proxy SNP for rs7442295

on the Illumina Chip (p ¼ 8 3 10�19)

with similar odds ratios, see Table 8.

The most associated SNP lies within

the SLC2A9 gene (MIM 606142), the

solute carrier family 2 (facilitated glu-

cose transporter), member 9 gene.

This SNP is within a sizeable region

of linkage disequilibrium (LD) and ex-

tends into a neighboring gene, WDR1

(a WD-repeat-containing protein im-

plicated in the development and

function of neutrophils and megakar-

yocytes [MIM 604734]).23 The associ-

ation signal is much stronger across

SNPs within SLC2A9 than the rest of

the high LD region. There are 762

SNPs that lie within 2 Mb of

rs7442295 on the Affymetrix 500k

gene chip; none of these contribute

additional information to explain

the association (all p > 0.007), sug-

gesting there is only one causative lo-

cus tagged by these SNPs (SLC2A9).

We found many associations with

lipid traits, replicating several pub-

lished known associations between

genes and serum triglyceride levels:

APO1/APOC3/APOA5 region (APOA1

[MIM 07680], APOC3 [MIM

107720], and APOA5 [MIM 606368]) (rs6589566, p ¼ 3 3

10�11),24 lipoprotein lipase, LPL (MIM 609708)

(rs17482753, p ¼ 1 3 10�9),25 and the recently established

association with glucokinase (hexokinase 4) regulator,

GCKR (MIM 600842) (rs780094, p ¼ 5 3 10�7)5. These
The American Journal of Human Genetics 82, 139–149, January 2008 143



Table 6. Correlation between Variables

Urate (mmol/l) Alcohol (units/week) Sex (female) Creatinine (mmol/l)

Alcohol (units/week) 0.24 (<2 3 10�16)

Sex (female) �0.41 (<2 3 10�16) �0.35 (<2 3 10�16)

Creatinine (mmol/l) 0.48 (<2 3 10�16) 0.13 (4.47 3 10�7) �0.50 (<2 3 10�16)

Thiazides (yes) 0.12 (6.9 3 10�7) �0.03 (0.18) 0.11 (3.1 3 10�6) 0.04 (0.07)

Entries are r (p) where r is Pearson’s correlation coefficient.
genes all showed considerably stronger evidence for associ-

ation in the meta-analysis (Table 9).

We also found an interesting signal in the BRIGHT co-

hort between LDL cholesterol and SNPs in a 10 Kb region

on chromosome 1p13.3 (most associated SNP, rs599839,

p ¼ 1 3 10�7; more detailed information in Table 4).

This region also showed association in Saxena et al.

(p ¼ 5 3 10�8), and the evidence for association was fur-

ther enhanced in the combined meta analysis (p ¼ 4 3

10�14). The common allele is associated with a 6% increase

in nonfasting serum LDL in the BRIGHT cohort and a 25%

increase in fasting serum LDL in the Saxena study. The

closest genes are PSRC1 and CELSR2 (MIM 604265); nei-

ther gene has previously been associated with LDL levels

(see Figure 2). We attempted to replicate association of

LDL with the PSRC1/CELSR2 region in the TwinsUK re-

source by using a proxy SNP for rs599839 (r2 ¼ 0.88) but

found only borderline significant association with fasting

LDL levels (p ¼ 0.06). However, the same allele of the

same SNP was recently reported to be strongly associated

with increased risk of coronary artery disease.26

We also found interesting signals between gamma glu-

tamyl transferase (GGT) and SNPs in the TNC gene (MIM

187380) (rs17819305, p ¼ 2 3 10�7); urine albumin and

SNPs around 102 Mb on chromosome 12 (rs11111839,

p ¼ 3 3 10�7) and 19.7 Mb on chromosome 3

(rs17006217, p ¼ 5 3 10�7); and urine sodium and SNPs

close to the PDYN gene (MIM 131340) (rs6035310, p ¼
2 3 10�7). Of potential interest is the SNP associated

with urinary sodium, which is upstream of prodynorphin,

PDYN. PDYN belongs to the opioid neuropeptide precursor

family and is a preproprotein that is proteolytically pro-

cessed to form secreted opioid peptides, which are ligands

for the kappa type of opioid receptor. This is interesting be-

cause the kappa opioid receptors have been shown to play

a role in regulating urinary sodium and water excretion. At

Table 7. Results of Multivariate Regression of Serum Urate
against Covariates and Most Associated SNP

Effect Size Std Error T p

Alcohol (units/week) 0.0012 0.0002 6.116 1.21 3 10�9

Sex (female) �0.0339 0.0044 �7.634 3.93 3 10�14

Creatinine (mmol/l) 0.0018 0.0001 15.149 <2 3 10�16

Thiazides (yes) 0.0299 0.0037 8.138 8.08 3 10�16

rs7442295 �0.0230 0.0031 �7.493 1.12 3 10�13
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this time, these associations need to be considered as pro-

visional until replicated in other studies.

Discussion

This study indicates that common genetic variation influ-

ences biochemical parameters that are measured in every-

day clinical care. Importantly, we have identified a region

that is on chromosome 1 and that is not previously known

to influence LDL, a frequently measured biomarker of car-

diovascular risk. In addition, we replicated many previ-

ously reported associations with other lipid traits. We

also discovered and replicated association between se-

rum-urate levels and the SLCA9 gene in two cohorts. This

indicates an inherited tendency to have higher urate

levels, a finding that might lead to the understanding the

biological relationship between serum urate and cardiovas-

cular disease.

There is clear epidemiological evidence that increased

levels of LDL lead to cardiovascular disease (mostly coro-

nary disease), and it is estimated that elevated cholesterol

contributes to 4.4 M deaths per annum worldwide.27 In

this context, our discovery of an association between se-

rum LDL levels and SNPs in neighboring genes PSRC1

and CELSR2 is of interest. Our finding assumes particular

importance because the same allele at same SNP has re-

cently been associated with increased risk of coronary dis-

ease in a combined genome-wide analysis of British and

German cohorts.26 Accordingly, our observations provide

a biological connection between genetic influence on

LDL levels and coronary heart disease.

The association appears to be localized to a 10 Kb region,

containing just the PSRC1 and CELSR2 genes that have not

been extensively characterized. PSRC1 (proline/serine-rich

coiled coil 1), also known as DDA3, is most abundantly ex-

pressed in adult brain and fetal thymus,28 but very little is

known about function of the gene product beyond a role as

a microtubule-associated protein within the WNT/beta-cat-

enin signaling pathway. This pathway, however, has been

functionally implicated in LDL processing in the liver.29,30

CELSR2 (cadherin, EGF LAG seven-pass G-type receptor 2)

is a member of the flamingo subfamily of receptors thought

to be involved in contact-mediated communication, but

a specific function has not yet been determined.31 We

found only borderline significant association between

a proxy SNP and LDL in the TwinsUK cohort. This finding
2008



Table 8. Replication of Associations

Serum Urate (mmol/l) and rs7442295

Cohort SNP Alleles MAF Effect 95% CI p r2 with rs7442295

BRIGHT rs7442295 A/G 0.21 �0.024 (�0.030, �0.018) 2 3 10�15 –

GRAPHIC rs7442295 A/G 0.21 �0.020 (�0.024, �0.015) 9 3 10�15 –

Twins UK rs6449213 T/C 0.20 �0.020 (�0.016, �0.024) 8 3 10�19 0.88

Hyperuracemia and rs742295

Cohort SNP Alleles MAF OR 95% CI p r2 with rs7442295

BRIGHT rs7442295 A/G 0.21 0.53 (0.38, 0.73) 1 3 10�4 –

GRAPHIC rs7442295 A/G 0.21 0.58 (0.40, 0.84) 4 3 10�3 –

Twins UK rs6449213 T/C 0.20 0.33 (0.16, 0.71) 4 3 10�3 0.88

LDL and rs599839

Cohort SNP Alleles MAF Effect 95% CI p r2 with rs599839

BRIGHT rs599839 A/G 0.24 0.95 (0.93, 0.97) 1 3 10�7 –

Saxena rs599839 A/G 0.23 0.83 (0.78, 0.89) 5 3 10�8 –

Twins UK rs646776 A/G 0.23 0.92 (0.85, 1.00) 0.06 0.88

The estimated effect is the effect of the minor allele compared to the major. Alleles stands for major/minor alleles. MAF stands for minor allele frequency.

95% CI stands for 95% confidence interval. OR stands for odds ratio.
parallels data from other recently discovered QTLs in which

the overall evidence is highly significant, but significant

association is not seen within every cohort, e.g., in the asso-

ciation between a common variant in the FTO (MIM

610966) (fat-mass- and obesity-associated) gene and body

mass.2 Thus, further genetic studies will be required for de-

termination of the respective role of these new genes in

lipid metabolism.

Generally, the estimated effect sizes for the lipid associa-

tions were lower in the BRIGHT subjects than those in the

Saxena study. The most likely explanation for the differ-

ence is that BRIGHT hypertensive subjects had nonfasting

measurements, whereas subjects in the Saxena study were

fasted. This could introduce additional noise from dietary

exposure, and such noise might attenuate genetic effects.

However, this also illustrates an interesting point, that ge-

netic polymorphisms that influence fasting lipid levels also

exert their effects in the more common ‘‘fed’’ state. This is

of importance because several recent papers have shown

association between nonfasting triglycerides with in-

creased risk of cardiovascular events.32,33

Our second novel finding of potential clinical relevance

is the identification of a common allele within the glucose

transporter gene SLC2A9, present in 79% of white Euro-

pean population, increases serum-urate levels by

0.02 mMol/l for each allelic copy, and this translates into

an odds ratio of 1.89 per copy for hyperuricaemia in

BRIGHT and similar OR in the replication cohorts. This as-

sociation was detected in a GWAS of hypertensive patients

and confirmed in two epidemiological collections that re-

flect the normal range of blood-pressure variation in the

UK. Genetic epidemiological data from the Framingham

study suggest that urate levels are markedly heritable; the

proportion of variance explained by shared genetic back-

ground is ~63%.34 Our findings at the SLC2A9 gene locus
The Am
explain 3.5% of residual urate variance (after adjustment

for covariates).

The SLC2A9 gene encodes a putative glucose transporter

most strongly expressed in the kidney and liver,35 and at

low levels in chondrocytes, suggesting this gene should

also be explored in patients with gout.36 There are no data

suggesting that SLC2A9 acts directly as a urate transporter

in the proximal nephron. However, the kidney is known to

have a pivotal role in urate handling via multiple organic an-

ion transporters (OATs 1–4 [MIM 607582, MIM 604995, MIM

607581, and MIM 607579], OATv1) and urate anion trans-

porters (URAT1 [MIM 607096], UAT) and is the target of

uricosuric drugs.36 We found no evidence for association

with these previously characterized urate transporters and

serum urate within the WTCCC genome-wide scan,

although many are poorly tagged by the Affymetrix chip

(Table 10).

There are many studies in the literature showing a corre-

lation between increased serum urate and blood pres-

sure,37,38 coronary artery disease, and other metabolic

disorders.39,40 Several mechanisms have been proposed

to explain the correlation of urate with hypertension and

common cardiovascular disease. These include enhanced

renin release from the kidney leading to vasoconstriction

and sodium retention, suppression of nitric oxide produc-

tion, and endothelial dysfunction, but the precise mecha-

nism is unclear.41

We note that none of the convincingly associated loci

reported in this paper were associated with hypertension

in the primary WTCCC study even though urate has

been associated with blood pressure in other studies.37,38,41

This might reflect either lack of power to detect association

with hypertension because these biochemical traits are

more strongly heritable or that these traits are biomarkers

of hypertension without being in the causative pathway.
erican Journal of Human Genetics 82, 139–149, January 2008 145



Table 9

Meta

Trait I p Effect 95% CI p R2

HDLa 0.96 1.27 3 10�9 0.96 0.94, 0.97 1.03 3 10�10 0.45

HDLa 1.07 1.31 3 10�6 1.05 1.03, 1.07 1.28 3 10�10 1.11

HDL 1.08 1.82 3 10�5 1.04 1.03, 1.06 5.02 3 10�7 0.47

HDL 0.97 1.31 3 10�5 0.95 0.94, 0.97 2.09 3 10�6 0.26

HDL 1.07 3.05 3 10�4 1.04 1.02, 1.06 5.79 3 10�6 0.45

LDLa 0.89 4.91 3 10�8 0.85 0.82, 0.89 3.50 3 10�14 1.71

LDLa 1.39 3.57 3 10�14 1.18 1.13, 1.23 8.27 3 10�14 0.32

LDLa 0.87 5.43 3 10�9 0.85 0.81, 0.89 8.58 3 10�13 1.05

LDL 1.16 1.31 3 10�3 1.09 1.06, 1.13 7.27 3 10�7 0.93

Trga 0.84 3.28 3 10�7 0.76 0.71, 0.82 5.23 3 10�15 2.22

Trga 1.29 3.44 3 10�8 1.18 1.13, 1.23 8.05 3 10�14 1.54

Trga 1.40 1.45 3 10�4 1.32 1.22, 1.42 3.65 3 10�12 2.65

Trga 0.94 2.46 3 10�4 0.89 0.85, 0.93 3.24 3 10�7 0.77

Trg 1.20 3.55 3 10�4 1.10 1.06, 1.15 2.38 3 10�6 0.60

Trg 0.95 1.59 3 10�3 0.87 0.82, 0.92 3.51 3 10�6 0.78

Trg 1.26 2.70 3 10�3 1.15 1.08, 1.22 4.98 3 10�6 0.80

Trg 0.91 1.12 3 10�4 0.86 0.81, 0.92 5.47 3 10�6 0.37

Trg 1.19 1.91 3 10�3 1.11 1.06, 1.15 5.51 3 10�6 0.70

Trg 0.93 4.65 3 10�4 0.88 0.83, 0.93 7.98 3 10�6 0.45

Trg 1.21 1.26 3 10�3 1.11 1.06, 1.16 9.87 3 10�6 0.57

Only the ck estimated from HapMap data. MAF stands for minor allele frequency in

BRIGHT ercentage of phenotypic variance explained by the SNP. All positions are
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. Meta-Analysis Associations, p < 1 3 10�5

Bright Broad

Chr Position SNP Genes A1 A2 MAF Effect 95% CI p Effect 95% C

16 55542640 rs9989419 CETP G A 0.4 0.98 0.96, 0.99 5.99 3 10�3 0.94 0.93,

8 19896590 rs17411031 LPL C G 0.27 1.05 1.02, 1.07 2.12 3 10�5 1.05 1.03,

15 56514617 rs261332 LIPC G A 0.21 1.03 1.01, 1.05 7.00 3 10�3 1.05 1.03,

9 104727210 rs3890182 ABCA1 G A 0.12 0.97 0.95, 1.00 3.80 3 10�2 0.94 0.92,

19 50169221 rs16979595 CLPTM1 G A 0.16 1.03 1.01, 1.06 6.11 3 10�3 1.05 1.02,

1 109534208 rs599839 PSRC1,

CELSR2

A G 0.24 0.95 0.93, 0.97 1.05 3 10�7 0.83 0.78,

19 50114786 rs4420638 APOE A G 0.19 1.03 1.00, 1.05 2.17 3 10�2 1.30 1.21,

2 21199973 rs562338 APOB G A 0.17 0.95 0.93, 0.98 3.31 3 10�5 0.80 0.75,

19 11088602 rs688 LDLR C T 0.45 1.03 1.02, 1.05 9.25 3 10�5 1.10 1.04,

8 19876926 rs17482753 LPL G T 0.11 0.84 0.79, 0.89 1.17 3 10�9 0.76 0.68,

2 27652888 rs780094 GCKR C T 0.39 1.10 1.06, 1.14 4.06 3 10�7 1.20 1.13,

11 116157633 rs6589566 APOA5 A G 0.06 1.29 1.20, 1.38 1.45 3 10�11 1.25 1.11,

1 62761840 rs12042319 ANGPTL3 G A 0.34 0.93 0.90, 0.97 3.29 3 10�4 0.88 0.82,

4 58825236 rs1471233 - C T 0.41 1.06 1.02, 1.10 2.00 3 10�3 1.12 1.05,

7 72321817 rs2074755 BAZ1B T C 0.11 0.91 0.86, 0.96 3.44 3 10�4 0.87 0.80,

1 174178573 rs12140698 - C T 0.12 1.10 1.05, 1.16 3.02 3 10�4 1.15 1.05,

1 166296403 rs3917820 SELP G A 0.12 0.94 0.89, 0.99 1.39 3 10�2 0.82 0.74,

9 1660196 rs4740635 - G C 0.33 1.07 1.03, 1.11 6.56 3 10�4 1.11 1.04,

9 110936892 rs7861175 - T C 0.2 0.94 0.90, 0.98 5.26 3 10�3 0.85 0.78,

18 12273547 rs7229921 - A G 0.25 1.06 1.02, 1.11 2.26 3 10�3 1.12 1.05,

SNP with the lowest p value for each region is shown. Genes listed are within 20 kb the associated SNP or within the LD blo

subjects; A1 stands for the major allele; and A2 stands for the minor allele; all effects are multiplicative. ‘‘R2’’ refers to the p

.

ations with p < 5 3 10�7.



This can only be resolved for SLC2A9 and urate by more ex-

tensive genotyping in large populations with blood-pres-

sure measurements and functional studies. Unfortunately,

it is difficult to estimate how large a sample size would be

required without robust estimates of the effect of change

in uric acid on disease endpoints, and we could not find

these for the UK population. Finally, we note that analysis

in hypertensives only or hypertensives and diabetics for

the lipid traits might reveal genes that are not relevant to

the general population. However, our replication of known

associations in these disease-selected populations and the

replication of our novel results in population cohorts

(TwinsUK and GRAPHIC) indicate that our results are inde-

pendent of disease background and applicable to the wider

population.

In summary, we have identified a gene locus for serum

LDL, a common risk factor for coronary disease, and rep-

Figure 2. Genome-Wide Association
with Serum LDL
The dotted line represents the threshold
for genome-wide significance.

licated several other genes for dyslipi-

daemia. Furthermore, we detected

common SLC2A9 variants that in-

crease serum urate, but the precise re-

lationship of our findings to blood

pressure, cardiovascular risk, and

gout will require further work. Our

findings provide a focus for several

novel research avenues, whose re-

sults might have widespread clinical

applications and illustrates the addi-

tional value that can be extracted

from GWAS data when subjects

have been intensively phenotyped

for intermediate traits.

Supplemental Data

A membership list of the WTCCC is avail-

able at http://www.ajhg.org/cgi/content/

full/82/1/139/DC1/.
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Table 10. Known Urate Transporters Showing the Number of HapMap SNPs Tagged by Affymetrix SNPs at R2 > 0.8

Name

Alternative

Identity Chr Gene Start Gene End

Number of

HapMap.SNPs

Number of

Affy SNPs Mean R2
Percentage of Hapmap

SNPs tagged at R2 > 0.8

ABCC4 MRP4 13 94470091 94751684 395 90 0.75 0.610

LGALS9 UAT2 17 22982301 23000712 34 9 0.82 0.735

PDZK1 PDZK1 1 144439083 144475430 93 26 0.83 0.677

SLC17A1 NPT-1 6 25891296 25938776 118 16 0.87 0.873

SLC22A6 OAT1 11 62500646 62509045 23 4 0.57 0.348

SLC22A7 OAT2 6 43373976 43381253 25 9 0.67 0.440

SLC22A8 OAT3 11 62516873 62539887 37 5 0.37 0.324

SLC22A9 OAT-5 11 62893837 62934286 52 11 0.80 0.673

SLC22A11 OAT4 11 64079674 64095574 24 12 0.86 0.792

SLC22A12 URAT1 11 64114858 64126396 15 6 0.62 0.533

SLC2A9 GLUT9 4 9436948 9650970 352 78 0.94 0.898

SLC9A3R1 NHERF-1 17 70256379 70277089 42 2 0.56 0.310

SLC9A3R2 NHERF-1 16 2016930 2028484 28 4 0.27 0.143

SLC5A8 AIT 12 100073409 100128120 99 15 0.72 0.545
Web Resources

The URLs for data presented herein are as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim

TwinsUK Registry, http://www.twinsUK.ac.uk
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